
Pricing equity and contingent convertibles with

idiosyncratic risk I

Xiaolin Wanga, Zhaojun Yangb,∗

aSchool of Economics, Henan University, Kaifeng 475001, China
bDepartment of Finance, Southern University of Science and Technology, Shenzhen

518055, China

Abstract

We consider capital structure including equity, straight bonds (SBs) and

contingent convertibles (CoCos). We derive the implied values of equity and

CoCos and show that the benefits from issuing CoCos increase dramatically

with idiosyncratic risk and risk aversion. The firm value is concave in the

CoCos’ conversion ratio and optimal conversion ratio increases with risk aver-

sion and idiosyncratic risk. If the claimants are sufficiently risk-averse, the

firm should issue less CoCos and equity but more SBs as the idiosyncratic

risk rises. If shareholders are sufficiently risk-averse, their risk-shifting in-

centives disappear. The higher the idiosyncratic risk or the bigger the risk

aversion, the higher the leverage.
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1. Introduction

Motivation. Contingent convertibles (CoCos), also known as contingent con-

vertible bonds, are specific type of corporate securities and the possibility

of converting them to equity is contingent on a specified event, that can be

different depending on the particular need of an issuer. In the case of that

the issuer of CoCos is a bank, the contingent event might, for example, be

related to the level of Tier 1 capital falling under a given threshold. In theory,

it would be beneficial for any firm to issue CoCos, as argued by Flannery

(2005), Song and Yang (2016), Tan and Yang (2016) and Yang and Zhao

(2015) among others. As a matter of fact, since CoCos were first issued by

Lloyds Banking Group in November 2009, they have been widely welcomed

by banks of many countries in the world. According to the statistics reported

by a journalist of the Chinese journal of Moneyweek on December 29, 2014,

the banks in China have stepped up issuance: from nothing in 2012 to RMB

358.35 bn yuan of CoCos by December 2014. Most of CoCos issued in China

are the so-called write-down CoCo bonds, which are a special type of CoCos

with their conversion ratios being zero. Here conversion ratios, also known as

ownership stakes, which are the fraction of equity allocated to CoCo holders

once CoCos convert into equity.

To the best of our knowledge, all papers in the literature on CoCos as-

sume investors are risk-neutral toward idiosyncratic risk or idiosyncratic risk

can be well diversified away. This assumption greatly simplifies the pricing

of financial claims. As a starting point of studying CoCos, it is desirable and
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essential. Especially, if idiosyncratic risk disappears or is diversified away,

we can recover the unique reasonable no-arbitrage price. However, in a real

market environment, the idiosyncratic risk faced by a firm is impossible to

be completely eliminated. For example, according to Chen et al. (2010),

entrepreneurial firms tend to have highly concentrated ownership and lack

of diversification is one of the defining characteristics of entrepreneurship.

Even though a firm is publicly listed,1 its equity holders would still take on

considerable uninsured idiosyncratic risk. CoCos share much similarity with

equity though they are of course different. CoCos indeed belong to a kind

of hybrid bonds and are potentially equity. Recently, several banks have an-

nounced that they are considering paying managers and executives with such

instruments. For example, Credit Suisse is scrapping a scheme that linked

bonuses to risky assets after the plan clashed with capital regulations. The

5,500 senior bankers who were offered the scheme in 2012 may now choose

between two replacement plans, one of which is CoCo instruments, which

are wiped out if the bank’s capital falls below a certain level, see Toshniwal

(2011). In addition, Barclays has sought approval from the UK regulators

for paying its bankers (managing director level and above) with CoCo instru-

ments.2 The CoCo instruments in executive compensation are also argued by

Walther and Klein (2015), Kagade and Verma (2015) and Kaal (2012) among

others. However the executives and managers have undiversified portfolios

and naturally such CoCo holders would face significant idiosyncratic risk, see

1Cerasi and Daltung (2000) point out that bank assets are indivisible and illiquid.
2See Jennifer Hughes and Patrick Jenkins, Barclays Forced to Adapt Cocos Bonus Plan,

FINANCIAL TIMES, Feb. 14, 2011.
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Ingersoll (2002). It is true that CoCo investors are generally financial insti-

tutions who can diversify idiosyncratic risk more effectively. However, the

remaining idiosyncratic risk they face would be still significant, in particular

if the CoCo issuers are not public-listed companies.

In a word, the pricing of equity or CoCos that overlooks idiosyncratic risk

is a shortcoming to be overcome under many situations. In fact, this pricing

method would significantly overestimate asset values and usually induces in-

vestors to take too big risks. As a result, it would considerably underestimate

a firm’s leverage and therefore assign the firm a wrong credit score.

To overcome the shortcoming, utility-based models are still the only

theoretically defensible way of treating such markets, although there is a

widespread practice of using risk-neutral pricing, even when the assets being

priced cannot be replicated by trading in other, more primitive assets, as

argued by Steven E. Shreve.3 It is true that, to derive pricing kernels of a

risk-neutral pricing approach, we also make use of utility functions in solving

agents’ utility maximization problem. However, this method is very different

from our utility-based pricing method we discuss here. In particular, the

former leads to a linear pricing schedule but the latter induces a non-linear

pricing one.

On the contrary, straight bonds (SBs) would be better priced compet-

itively by diversified lenders, i.e. the idiosyncratic risk resulting from SBs

could be well diversified away, as argued by Chen et al. (2010).4 For example,

3See page 70 of the book titled Stochastic Calculus for Finance I authored by Steven

E. Shreve in 2004.
4Chen et al. (2010) show further that while nondiversifiable risk does lower the value
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credit default swaps, which are liquidly traded assets and depend only on the

default risk, can potentially hedge the risk.

Our work. This paper considers the design and pricing of CoCos and opti-

mal capital structure of a firm issuing equity and either SBs or both SBs

and CoCos involving idiosyncratic risk. Following Miao and Wang (2007)

among others, we assume a firm’s cash flow evolves according to an arith-

metic Brownian motion. All investors are risk-averse and have access to one

risk-free asset and market portfolio to smooth their consumption. We as-

sume SB holders are fully diversified and thus we derive its equilibrium value

(market value) according to an equilibrium pricing approach. The cash flow

is non-tradable and therefore both CoCos and equity have idiosyncratic risk.

Therefore, we derive semi-closed-form solutions of the implied values or con-

sumption utility indifference prices of equity and CoCos by a consumption

utility indifference pricing approach under an endogenous bankruptcy trig-

gering level, an exogenously specified conversion ratio. Last, we provide

numerical sensitivity analysis by finite difference methods.

Literature review. Following the recent financial crisis, CoCos have been at-

tracting increasing research interests. Flannery (2005) first suggests the idea

for CoCos. Sundaresan and Wang (2015) provide the condition that the

conversion ratio must satisfy in order for a unique equilibrium to exist and

present a design that mitigates the problem of multiple equilibria. McDon-

ald (2013) proposes a form of contingent capital for financial institutions that

of SBs from the perspective of underdiversified investors, the decreased amount of their

prices is very small.
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converts from debt to equity if two conditions are met: the firm’s stock price

is at or below a trigger value and the value of a financial index is also at or

below a trigger value. Barucci and Del Viva (2012a) study the optimal cap-

ital structure of a company issuing perpetual CoCos, equity and SBs with a

two-period model. Barucci and Del Viva (2012b) analyze the optimal capital

structure of a bank issuing countercyclical CoCos, i.e., the notes that will

convert into common shares in a recession.

To take into account idiosyncratic risk, the consumption utility-based

indifference pricing method is a good choice. It is a dynamic extension of

the static concept of certainty equivalence from economics. Recently, this

method has been applied widely, see Henderson and Hobson (2002), Miao

and Wang (2007), Ewald and Yang (2008), Chen et al. (2010), Yang and

Yang (2012) and Song, Wang and Yang (2014), among others. In particular,

Leung, Sircar and Zariphopoulou (2008) and Liang and Jiang (2012) derive

the price of a defaultable corporate bond (i.e. SB) also by a utility-based

method.

The remainder of the paper proceeds as follows. Section 2 sets up the

model and shows the endogenous bankruptcy condition and conversion con-

dition decided by a given conversion threshold of CoCos. Section 3 presents

the implied values of CoCos and equity. Section 4 discusses the equilibrium

pricing. Section 5 addresses optimal capital structure. Section 6 presents

numerical simulations. Section 7 concludes. Proofs of theorems and propo-

sitions are relegated to appendices.
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2. Model setup

Consider a firm that has invested in a project, of which the total cash flow

δ is observable and governed by the following arithmetic Brownian motion:

dδt = µdt+ ρσdZ1
t + σ

√
1− ρ2dZ2

t , δ0 given, (1)

where µ is the expected growth rate, σ is the volatility and Z ≡ (Z1, Z2) is a

two-dimensional standard Brownian motion on a complete probability space

(Ω,F ,P). The process Z1 is independent of Z2. We denote by F ≡ {Ft :

t ≥ 0} the P-augmentation of the filtration σ(Zs; 0 ≤ s ≤ t) generated by

process Z.

Remark 1. Our assumption of the cash flow means it might take negative

values, which are interpreted as losses. This is impossible under the more

common assumption of a geometric Brownian motion. However, our as-

sumption here has more realistic features. For example, newly founded firms

or a firm in a recession might undergo a negative cash flow.

The firm issues equity, SBs and CoCos. For simplicity, both bonds are

consol type, meaning they are annuities with infinitive maturity. SBs (Co-

Cos) pay coupon b1 (b2), continually in time, until default (conversion). The

conversion threshold of CoCos is pre-specified while the default threshold of

SBs is endogenously determined by shareholders.

We assume all investors have standard liquid financial opportunities which

involves a risky market portfolio and a risk-free asset with interest rate r > 0.

Let {Mt : t ≥ 0} denote the value of the market portfolio, which is governed

by the following equation:

dMt/Mt = µedt+ σedZ
1
t , M0 given, (2)
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where µe and σe are the expected return and volatility of the market respec-

tively. Clearly, the parameter ρ in (1) represents the correlation coefficient

between the firm’s cash flow and the return of the market portfolio. The

parameters ρσ and σ
√

1− ρ2 are the systematic and idiosyncratic volatility

of the cash flow respectively. Thus, if |ρ| < 1, investors face idiosyncratic

risk.

Once default occurs, SB holders take control and liquidate the firm in an

open market. The liquidation value is based on the market value of the firm

defined by an equilibrium pricing approach since we assume the buyer is a

diversified investment company.

According to the above-mentioned standard liquid financial opportunities,

we derive the equilibrium stochastic discount factor, which corresponds to a

risk-neutral probability measure Q, see Duffie (2001) among others. After

that, we rewrite the cash flow process δ in (1) as follows:

dδt = (µ− ρση)dt+ ρσdZQ
t + σ

√
1− ρ2dZ2

t , (3)

where η = (µe− r)/σe is the Sharpe ratio, µ− ρση is the risk-adjusted drift,

and ZQ is a standard Brownian motion under Q satisfying dZQ
t = dZ1

t + ηdt.

Thus, the equilibrium value or market value of an unlevered firm is given

by:

A0(δt) = EQ
[∫ ∞

t

e−r(s−t)δsds|Ft
]

=
δt
r

+
µ− ρση

r2
. (4)

We assume the liquidation value of the firm is equal to a fraction (1− α) of

the market value of the unlevered firm after tax , i.e. (1− ξ)(1− α)A0(δτ1),

where τ1 is the default time and ξ is the tax rate. The remaining fraction α

is lost due to bankruptcy costs.
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We assume CoCos convert into equity once the issuing firm’s value gets

small enough relative to the value of the outstanding debt. Specifically, the

conversion time is given by

τ2 ≡ inf

{
t ≥ 0 : φA0(δt) ≤

b1

r
+
b2

r

}
, (5)

where 0 < φ < 1 is called conversion leverage. The conversion leverage is

a constant determined by the agreement when it is signed.5 Therefore, the

conversion threshold, denoted by x̄2, is given from (4) and (5) by

x̄2 =
b1 + b2

φ
− µ− ρση

r
. (6)

Upon conversion of CoCos into equity, we assume the ownership stake (con-

version ratio) 0 < λ < 1 is a given constant specified in the agreement when

it is signed. Although the ownership stake can take any value between 0

and 1 in essence, we must choose it so large that shareholders will not ben-

efit from such conversion. Otherwise, shareholders might find it optimal to

“burn money” to push its cash flow below the conversion threshold.6

Throughout the text, borrowing ideas from Chen et al. (2010), we as-

sume there are three groups of investors: inside shareholders, inside CoCo

holders and outside SB holders.7 The inside equity and CoCos are exposed

5Roughly speaking, once the Tier 1 capital ratio falls below the level (1−φ), say 4% if

φ = 96%, conversion is triggered. This rule is similar to Glasserman and Nouri (2012).
6 According to Himmelberg and Tsyplakov (2012), if contractual terms do not dilute

the original equity upon conversion, the CoCo issuers would burn money and reduce asset

size. By doing so, the issuers can reduce their capital ratio and force the conversion.
7It would be more reasonable to assume that investor clienteles in our model include

inside/outside shareholders, inside/outside CoCo holders and inside/outside SB holders.
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to idiosyncratic risk and we therefore value them by a utility-based pricing

method. On the contrary, SBs are priced by a risk-neutral pricing approach

since we assume they can be traded in a competitive market and their id-

iosyncratic risk can be fully diversified away.

3. Utility-based pricing of equity and CoCos

To fix a utility-based price of an asset, we consider an investor with initial

wealth w investing in a standard liquid financial market defined in Section 2.

Denote the wealth process of an investor by W = (Wt)t≥0, his consumption

plan by C = (Ct)t≥0 and his investment strategy by θ = (θt)t≥0, where Ct

represents the consumption rate selected by the investor at time t and θt

denote the amount of the wealth allocated to the market portfolio. The

dynamics of wealth is given by

dWt = [θt(µe − r) + rWt − Ct]dt+ θtσedZ
1
t , t ≥ 0, W0 = w. (7)

Definition 3.1. The investment and consumption strategy (C, θ) is said to

be admissible for initial wealth w if (1) the consumption plan C is F-adapted

and takes value on [0,∞), such that
∫ t

0
|Cs|ds <∞ (a.s.) for any t ≥ 0; (2)

the investment strategy θ is F-adapted such that
∫ t

0
σ2
eθ

2
sds < ∞ (a.s.) for

each t ≥ 0. The set of all admissible strategies is denoted by A.

Remark 2. It is not necessary for the wealth process W given by (7) to

remain non-negative at all times. This is because investors are endowed

All insider investors price their claims by a utility-based method but all outside investors

price their claims by a risk-neutral pricing approach. To save space, we leave this problem

for future research.

10



with a project and thus they can borrow from a liquidate financial market

guaranteed by their project earnings.

An investor is characterized by his initial wealth W0 = w and his prefer-

ence (utility) U(·). Following many researchers, say Henderson and Hobson

(2002), Miao and Wang (2007) and Song, Wang and Yang (2014) among

others, we consider the CARA utility, i.e. the exponential utility given by

U(c) = − exp(−γc)/γ, c ∈ <, (8)

where γ > 0 is the absolution risk aversion parameter.

3.1. Preliminaries

To derive the consumption utility indifference prices (implied values) of

equity and CoCos, we first consider the following standard investment and

consumption problem.

An investor invests in a risk-free asset and a risky market portfolio to

smooth his consumption. The investor chooses an investment and consump-

tion strategy to maximize his expected lifetime time-additive consumption

utility

V 0(w) = sup
(C,θ)∈A

E
[∫ ∞

0

exp (−βt)U(Ct)dt|W0 = w

]
, (9)

subject to (7), where β > 0 is a time-discount rate. Similar to Merton (1971),

we easily obtain by dynamic programming that

V 0(w) = − 1

γr
exp

(
1− β/r − γr

(
w +

η2

2r2γ

))
. (10)
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3.2. The implied value of equity

To price a claim, the key is to specify its cash flow. The cash flow of

equity has three different expressions during different periods: The first is

the residual cash flow (1−ξ)(δt−b1−b2) if 0 ≤ t ≤ τ2, i.e. the CoCo conversion

has not taken place; The second is (1− λ)(1− ξ)(δt − b1) if τ2 ≤ t < τ1; The

last is 0 if t ≥ τ1, i.e. the firm has been liquidated. So, the claimant’s wealth

dynamics is given by

dWt =



[θt(µe − r) + rWt + (1− ξ)(δt − b1 − b2)− Ct]dt

+θtσedZ
1
t , 0 ≤ t < τ2;

[θt(µe − r) + rWt + (1− ξ)(1− λ)(δt − b1)− Ct]dt

+θtσedZ
1
t , τ2 ≤ t < τ1;

(θt(µe − r) + rWt − Ct)dt+ θtσedZ
1
t , t ≥ τ1.

(11)

Hence, the claimant should solve the following optimization problem

J(w, x) = sup
(C,θ,τ1)∈C×Θ×T

E
[∫ ∞

0

exp (−βs)U(Cs)ds |W0 = w, δ0 = x

]
, (12)

subject to (1) and (11) backward by dynamic programming, where T is the

set of all {Ft : t ≥ 0}-stopping times taking values on [0,∞).

Since the controlled system is time-homogeneous, there is a constant de-

fault threshold, denoted by x̄1, such that the optimal default time is given

by τ1 = inf {s ≥ 0 : δs ≤ x̄1}.

Remark 3. Generally speaking, a default threshold would depend on a cor-

responding wealth level, even though it is independent of time for a time-

homogeneous system. However, it is well-known that the CARA utility we

assume here induces the implied value of an asset and default threshold inde-

pendent of wealth level. This is actually why a lot of papers in the literature
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make the CARA utility assumption instead of CRRA utility though the latter

is more reasonable from an economic viewpoint.

The problem (12) can be solved backward. First, after the firm goes

bankrupt, it is a standard investment consumption problem defined by (9)

and (7), and so the value function is given by (10). Second, after CoCos are

converted into equity but before the firm goes bankrupt, he should solve the

following optimization problem

J1(w, x) = sup
(C,θ,τ1)∈C×Θ×T

E
[∫ ∞

0

exp (−βs)U(Cs)ds |W0 = w, δ0 = x

]
,

(13)

subject to (1) and

dWt =


[θt(µe − r) + rWt + (1− ξ)(1− λ)(δt − b1)− Ct]dt

+θtσedZ
1
t , 0 ≤ t < τ1;

(θt(µe − r) + rWt − Ct)dt+ θtσedZ
1
t , t ≥ τ1.

(14)

The Hamilton-Jacobi-Bellman (HJB) equation has the form

sup
c≥0,θ
{(rw + (1− ξ)(1− λ)(x− b1)− c)J1

w + U(c) + θ(µe − r)J1
w

+θσeσρJ
1
wx + θ2

2
σ2
eJ

1
ww}+ µJ1

x + σ2

2
J1
xx − βJ1 = 0,

(15)

with the following boundary conditions, see e.g. Krylov (1980):

J1(w, x̄1) = V 0(w), J1
x(w, x̄1) = 0 and lim

x→+∞
J1(w, x) = J2(w, x), (16)

where and throughout the text, the subscript of a function (J1 here) repre-

sents the differentiation with respect to that variable and J2(w, x) is defined

by solving the following optimization problem

J2(w, x) = sup
(C,θ)∈C×Θ

E
[∫ ∞

0

exp (−βs)U(Cs)ds |W0 = w, δ0 = x

]
, (17)
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subject to (1) and

dWt = [θt(µe−r)+rWt+(1−ξ)(1−λ)(δt−b1)−Ct]dt+θtσedZ1
t , t ≥ 0. (18)

This is because if the current cash flow level x → +∞, the bankruptcy will

not happen.

We now solve (15) with boundary conditions (16). At first, the optimal

consumption and portfolio rules are evidently given by

U ′(c) = J1
w(w, x) and θ =

−J1
w

J1
ww

η

σe
+
−J1

wx

J1
ww

σρ

σe
. (19)

The first equation says that at the optimal solution, the marginal utility of

current consumption is equal to the marginal utility of wealth increased if

we consume less at present.

Therefore, if the current cash flow level is x, we define the consumption

utility indifference price, i.e. the subjective value or implied value, denoted

by E1(x, b1),8 of equity as the solution of the following equation:

J1(w, x) = V 0(w + E1(x, b1)). (20)

It follows from the last equation of (16), that

lim
x→∞

V 0(w + E1(x, b1)) = J2(w, x). (21)

Noting that similar to Miao and Wang (2007), we are able to get an explicit

solution to the optimization problem defined by (17) and (18). We therefore

8On account of that the controlled system is time-homogeneous and thanks to the

assumption of CARA utility, the implied value of equity is a function of the current cash

flow level x. In particular, it is independent of the current wealth level w. This conclusion

can be proved by a “guess-and-verify” method as used by Miao and Wang (2007).
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obtain following proposition by substituting (10) and (20) into (15), (16) and

(19):

Proposition 3.1. If CoCos have converted into equity but default has not

occurred, the implied value of equity owned by original shareholders satisfies

the following ordinary differential equation (ODE):

(1− ξ)(1− λ)(x− b1) + (µ− ρση)E1
x + σ2

2
E1
xx

−σ2

2
(1− ρ2)rγ(E1

x)
2 = rE1(x, b1),

(22)

subject to the value-matching and smooth-pasting conditions9

E1(x̄1, b1) = 0 and E1
x(x̄1, b1) = 0 (23)

and

lim
x→+∞

E1(x, b1) = (1− ξ)(1− λ)[x−b1
r

+ 1
r2

(µ− ρση

−1
2
σ2(1− ρ2)(1− ξ)γ(1− λ))].

(24)

The optimal consumption rate is given by c∗t = β−r
γr

+ r[Wt + η2

2r2γ
+ E1(δt, b1)], τ2 ≤ t < τ1;

c∗t = β−r
γr

+ r(Wt + η2

2r2γ
), t ≥ τ1.

(25)

And the optimal portfolio rule is given by θ∗t = η
γσe

1
r
− ρσ

σe
E1
x, τ2 ≤ t < τ1;

θ∗t = η
γσe

1
r
, t ≥ τ1.

(26)

9It is a priori not obvious that the value-matching and smooth-pasting conditions are

equivalent to the solution of the constrained maximization problem of shareholders. For

this problem, please refer to the discussions by Song, Wang and Yang (2014).
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Last, if CoCos have not converted yet, in the same way, the HJB equation

has the form

sup
c≥0,θ
{(rw + (1− ξ)(x− b1 − b2)− c)Jw + U(c) + θ(µe − r)Jw

+θσeσρJwx + θ2

2
σ2
eJww}+ µJx + σ2

2
Jxx − βJ = 0,

(27)

with the following boundary conditions:

J(w, x̄2) = J1(w, x̄2) and lim
x→+∞

J(w, x) = J3(w, x), (28)

where x̄2 represents the conversion threshold, and J3(w, x) is given by an

explicit solution of the following simpler optimization problem:

J3(w, x) ≡ sup
(C,θ)∈C×Θ

E
[∫ ∞

0

exp (−βs)U(Cs)ds |W0 = w, δ0 = x

]
,

subject to (1) and

dWt = [θt(µe − r) + rWt + (1− ξ)(δt − b1 − b2)− Ct]dt+ θtσedZ
1
t , t ≥ 0.

At first, thanks to (27), the optimal consumption rate and portfolio rule are

respectively given by

U ′(c) = Jw(w, x) and θ =
−Jw
Jww

η

σe
+
−Jwx
Jww

σρ

σe
. (29)

Under this situation, the implied value, denoted by E(x, b1, b2), of equity is

defined by

J(w, x) = V 0(w + E(x, b1, b2)), (30)

and we therefore have

lim
x→+∞

V 0(w + E(x, b1, b2)) = J3(w, x). (31)

Similar to the derivation of Proposition 3.1, we obtain the following theorem:
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Theorem 3.2. If CoCos have not converted into equity, the implied value

E(x, b1, b2) of equity is a solution of the following ODE:

(1− ξ)(x− b1 − b2) + (µ− ρση)Ex + σ2

2
Exx

−σ2

2
(1− ρ2)rγ(Ex)

2 = rE,
(32)

subject to the boundary conditions:

E(x̄2, b1, b2) = E1(x̄2, b1) (33)

and

lim
x→+∞

E(x, b1, b2) = (1− ξ)[x−b1−b2
r

+ 1
r2

(µ− ρση

−1
2
σ2(1− ρ2)(1− ξ)γ)],

(34)

where x̄2 is a conversion threshold given by (6), and the function E1(·, b1) is

given by Proposition 3.1. The optimal consumption rate is given by
c∗t = β−r

γr
+ r[Wt + η2

2r2γ
+ E(δt, b1, b2)], 0 ≤ t < τ2;

c∗t = β−r
γr

+ r[Wt + η2

2r2γ
+ E1(δt, b1)], τ2 ≤ t < τ1;

c∗t = β−r
γr

+ r(Wt + η2

2r2γ
), t ≥ τ1.

(35)

And the corresponding optimal portfolio rule is given by
θ∗t = η

γσe
1
r
− ρσ

σe
Ex, 0 ≤ t < τ2;

θ∗t = η
γσe

1
r
− ρσ

σe
E1
x, τ2 ≤ t < τ1;

θ∗t = η
γσe

1
r
, t ≥ τ1.

(36)

We now discuss the implications of this theorem. First, if γ → 0, i.e. the

investor is risk-neutral toward idiosyncratic risk, or |ρ| = 1, i.e. idiosyncratic

risk disappears, the last term of the left-hand side of (32) disappears, and

(32) becomes the standard pricing equation under the equilibrium pricing

approach. Otherwise, if γ > 0 and |ρ| < 1, due to the fact that the last
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term of the left-hand side of (32) is strictly negative, for a sufficient large

risk-aversion index, say γ = 1, (32) says that a larger volatility may lead

to a lower value of equity. This result is in sharp contrast to that derived

from an equilibrium pricing approach. Intuitively, this is because a larger

volatility means a higher risk, and therefore the value of the claim may be

less for a risk-averse equity holder. However, if investors are risk-neutral

toward idiosyncratic risk, the value of equity may increase with the volatility

σ of the cash flow, since shareholders harvest all the cash flow growth but

the loss suffered by them is limited thanks to bankruptcy protection.

3.3. The implied value of CoCos

The CoCo holder’s wealth evolves in the following way:

dWt =



(θt(µe − r) + rWt + b2 − Ct)dt+ θtσedZ
1
t , 0 ≤ t ≤ τ2;

[θt(µe − r) + rWt + λ(1− ξ)(δt − b1)− Ct]dt

+θtσedZ
1
t , τ2 ≤ t < τ1;

(θt(µe − r) + rWt − Ct)dt+ θtσedZ
1
t , t ≥ τ1.

(37)

With the conversion threshold and default threshold given by (6) and Propo-

sition 3.1 respectively, its claimant seeks to choose a consumption plan C ∈ C

and a portfolio rule θ ∈ Θ so as to maximize the expected lifetime utility:

G(w, x) = sup
(C,θ)∈C×Θ

E
[∫ ∞

0

exp (−βs)U(Cs)ds |W0 = w, δ0 = x

]
, (38)

subject to (1) and wealth accumulation equation (37). We solve this back-

ward by dynamic programming as before and obtain the following conclu-

sions:
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Proposition 3.3. If CoCos have converted into 100λ percent of equity and

default has not taken place, then the implied value CB1(x, b1) of CoCos sat-

isfies the following ODE:

λ(1− ξ)(x− b1) + (µ− ρση)CB1
x + σ2

2
CB1

xx

−σ2

2
(1− ρ2)rγ(CB1

x)
2 = rCB1,

(39)

subject to the first boundary condition

CB1(x̄1, b1) = 0, (40)

where x̄1 is the default threshold given by Proposition 3.1, and the second

boundary condition

lim
x→+∞

CB1(x, b1) = λ(1− ξ){x−b1
r

+ 1
r2

[µ− ρση

−1
2
σ2(1− ρ2)γλ(1− ξ)]}.

(41)

The optimal consumption rate is given by c∗t = β−r
γr

+ r[Wt + η2

2r2γ
+ CB1(δt, b1)], τ2 ≤ t < τ1;

c∗t = β−r
γr

+ r(Wt + η2

2r2γ
), t ≥ τ1.

(42)

And the optimal portfolio rule is given by θ∗t = η
γσe

1
r
− ρσ

σe
CB1

x, τ2 ≤ t < τ1;

θ∗t = η
γσe

1
r
, t ≥ τ1.

(43)

Theorem 3.4. If CoCos have not converted into equity, the implied value

CB(x, b1, b2) of CoCos satisfies the following ODE:

b2 + (µ− ρση)CBx + σ2

2
CBxx − σ2

2
(1− ρ2)rγ(CBx)

2 = rCB, (44)

subject to the boundary conditions

CB(x̄2, b1, b2) = CB1(x̄2, b1), and lim
x→+∞

CB(x, b1, b2) =
b2

r
, (45)
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where the conversion threshold x̄2 is given by (6) and the function CB1(·, b1)

is given by Proposition 3.3. The optimal consumption rate is given by
c∗t = β−r

γr
+ r[Wt + η2

2r2γ
+ CB(δt, b1, b2)], 0 ≤ t < τ2;

c∗t = β−r
γr

+ r[Wt + η2

2r2γ
+ CB1(δt, b1)], τ2 ≤ t < τ1;

c∗t = β−r
γr

+ r(Wt + η2

2r2γ
), t ≥ τ1.

(46)

And the corresponding optimal portfolio rule is
θ∗t = η

γσe
1
r
− ρσ

σe
CBx, 0 ≤ t < τ2;

θ∗t = η
γσe

1
r
− ρσ

σe
CB1

x, τ2 ≤ t < τ1;

θ∗t = η
γσe

1
r
, t ≥ τ1.

(47)

We discuss the implications of this theorem as follows. First, the last

term σ2(1 − ρ2)rγ(CBx)
2/2 on the left-hand side of (44), reflects the effect

of the risk attitude of CoCo holders and the idiosyncratic risk volatility on

the implied CoCo value. It says clearly that under an incomplete market,

the risk aversion γ or the idiosyncratic risk volatility (σ
√

1− ρ2) reduces the

implied value. If γ approaches 0 or idiosyncratic risk is fully diversified, we

can derive an explicit implied value, which is just its equilibrium price. In

this case, only systematic risk demands risk premium. The second term on

the left-hand side of (44), (µ−ρση)CBx, presents the risk-adjusted expected

growth rate of the cash flow through the systematic volatility of the cash flow

and the Sharpe ratio. The risk adjustment can be obtained from the CAPM

model. In an incomplete market, idiosyncratic risk is non-diversifiable, and

the last term σ2(1 − ρ2)rγ(CBx)
2/2 on the left-hand side of (44) plays an

important role on risk adjustment from idiosyncratic risk.

The first equation of (45) is due to the value-matching condition at con-

version which says that the implied value of CoCos will not jump due to
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conversion. And the second equation shows that the implied value of CoCos

will converge to the value of default-free bonds with the same coupon if con-

version never happens. Equation (46) represents that optimal consumption

just consists of a fixed consumption, an excess return of the market portfolio

investment and a part of the equivalent risk-free income of the claimant’s to-

tal wealth including the implied value of the future cash flow. Constant β−r
γr

is the fixed consumption, which says that the greater the time-discount rate,

the more the current consumption. Equation (47) suggests that the hedging

demand increases with the absolute values of the correlation coefficient (|ρ|)

and the marginal value of CoCos. After default has taken place, the third

equalities of (46) and (47) are the standard Merton-style consumption plan

and portfolio rule respectively.

Based on the above analysis, we derive the equilibrium prices, which are

also the no-arbitrage prices under a complete market, in the following section.

4. Equilibrium prices of corporate securities

We assume SB investors are well diversified and thus we provide an equi-

librium price for SBs, similar to (4). We price SBs by computing the ex-

pected sum of their coupons discounted with the risk-free interest rate under

the measure Q, and therefore, we obtain:

Theorem 4.1. If the current cash flow rate is x and default has not occurred,

the equilibrium price of SBs is explicitly given by

B(x, b1) = b1
r

(
1− eκ(x−x̄1)

)
+ (1− α)(1− ξ)

(
x̄1
r

+ µ−ρση
r2

)
eκ(x−x̄1), (48)
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where κ = − (µ−ρση)+
√

(µ−ρση)2+2rσ2

σ2 < 0 and x̄1 is the default threshold given

by Proposition 3.1.

Remark 4. Theorem 4.1 states that the equilibrium price of SBs is merely

the equilibrium price of the coupon payment obtained by its holders before

bankruptcy, plus a lump-sum dividend paid at bankruptcy, equalling a fraction

(1− α) of the market value of the unlevered firm.

In the same way, it is easy to derive the equilibrium prices of equity and

CoCos as the corollaries of Theorems 3.2 and 3.4 and Propositions 3.1 and

3.3, respectively. To save space we omit them here.

5. Optimal Capital Structure

In practice, there are seldom firms who take pure equity financing and

conversely a mix of debt and equity is common. A general explanation for

this phenomenon is that debt financing can reduce the tax burden on firms.

This explanation is reasonable, but not complete. In fact, as seen in our

numerical analysis, another reason is more important in a risk-averse world.

Namely, in contrast to pure equity financing, a mix of equity, SBs and CoCos

can produce considerable diversification benefits in addition to tax shields.

In essence, all diversification benefits are generated from the nonlinear

qualities of the utility-based asset prices combining with idiosyncratic risk.

This is because the utility-based asset prices are derived from a nonlinear

pricing schedule, which refers to any pricing structure where the total charges

payable by purchasers are not proportional to the quantity of their obtained

assets. In particular, as stated at Proposition 1.8 in the book of Carmona
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(2009), the indifference price (implied value) of a claim is a nondecreasing

and convex function of its payoff. It means that the implied value of a

claim is less than the sum of all the implied values of its parts. On the

contrary, the diversification benefits disappear once the prices are derived

from a risk-neutral pricing method since the latter corresponds to a linear

pricing schedule.

Naturally, we want to know what the best combination of equity, SBs and

CoCos, i.e. optimal capital structure, should be to maximize the total firm’s

value. Motivated by Duffie (2001),10 we assume the original owner of the firm

will sell the firm to the equity and CoCo holders at the consumption utility

indifference prices defined in this paper respectively, and to the diversified SB

investors at the equilibrium price. In other words, the firm values its equity

at the implied value E(x, b1, b2) and its CoCos at CB(x, b1, b2). Diversified

lenders price debt in competitive capital markets at B(x, b1), which does not

contain the idiosyncratic risk premium.

Doing so, we must specify the ownership stake of CoCos at the same time.

However, to the best of our knowledge, no papers in the literature consider

the optimal ownership stake. This is because all papers in the literature as-

sume investors are risk-neutral toward idiosyncratic risk and therefore, the

selection of the conversion ratio is independent of the total firm value. How-

ever, if investors are risk-averse, the situation is fundamentally different, i.e.

the total firm value is closely related with the ownership stake. For this rea-

son, optimal capital structure problem is to maximize the sum of the three

10See the second paragraph from the bottom on Page 260 of the book titled Dynamic

Asset Pricing Theory authored by Darrell Duffie in 2001.
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prices of equity, SBs and CoCos over all admissible ownership stake λ and

coupons b1 and b2.

More specifically, given the exogenous conversion threshold and endoge-

nous bankruptcy conditions, the original owner divides the total cash flow

of the firm into three parts that are uniquely determined by the ownership

stake λ and coupons b1 and b2. That is, to derive an optimal capital structure

for a firm, we need only to solve the following optimization problem:

max
b1,b2,λ

{E(x, b1, b2) + CB(x, b1, b2) +B(x, b1)} , (49)

where the function E(·, b1, b2), CB(·, b1, b2) and B(·, b1) are given by Theo-

rems 3.2, 3.4 and 4.1 respectively.

Thanks to Chen et al. (2010), we may also interpret the target function

in (49) as the total value that one needs to pay to acquire the firm by buying

out the shareholders, CoCo holders and SB holders.

There are seldom explicit solutions of optimal capital structure includ-

ing CoCos even based on an equilibrium pricing approach, let alone the

utility-based pricing we discuss here. Naturally, an explicit solution to the

optimization problem defined by (49) is not available and thus, we provide

numerical simulations in the next section.

6. Comparative statics and numerical simulations

In this section, we perform numerical simulations and focus on parameter

regions where conversion and default will not happen immediately. Following

Koziol and Lawrenz (2012) and Glasserman and Nouri (2012) among others,

unless otherwise stated, the baseline parameter values are selected as follows:
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r = 0.05, δ0 = x = 5, φ = 0.96, b1 = 4, b2 = 0.8, σ = 0.6, µ = 0.18, η = 0.35,

γ = 1, ρ = 0.7, ξ = 0.2, α = 0.4 and the ownership stake λ = 0.4.11

6.1. The effects of risk aversion and cash flow volatility

Table 1 states that the implied value of equity decreases quickly but that

of CoCos decreases slowly as investors get more risk-averse. The difference

results from the fact that equity has more cash flow risk than CoCos. As

predicted by (6), conversion threshold x̄2 keeps unchanged. The SBs’ price

is generally independent of risk aversion. However, as explained in Table 1,

a bigger risk aversion induces a higher default threshold x̄1 and naturally a

bit less SBs’ price.

Table 1: Impacts of risk aversion (γ) on default threshold x̄1,

conversion threshold x̄2, equilibrium price B of SBs and the implied

values E, CB of equity and CoCos respectively.

γ γ → 0 0.01 0.1 1 1.5 2 2.5

x̄1 1.74 1.74 1.78 2.05 2.16 2.26 2.33

x̄2 4.34 4.34 4.34 4.34 4.34 4.34 4.34

B 72.60 72.60 72.49 71.50 71.07 70.69 70.37

E 19.98 19.80 18.99 13.40 11.53 10.15 9.09

CB 10.98 10.95 10.81 9.57 8.99 8.47 8.02

11 By contrast, Koziol and Lawrenz (2012) suppose a firm’s cash flow is driven by a

geometric Brownian motion and their conversion time is the first time of the cash flow

hitting the boundary φ(d + c), where φ > 0 is a constant, d is the aggregate deposit

payment and c is CoCos’ coupon rate. Our conversion rule is similar to Glasserman and

Nouri (2012).
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Table 2 depicts the same results with Table 1 with regard to cash flow

volatility (σ) instead of risk aversion. It displays that the implied values of

equity and CoCos and the equilibrium price of SBs decrease as the volatility

grows. The former is obvious and the latter holds since SB holders need

more systematic risk premium for a larger volatility. In contrast to standard

pricing method, there is a U-shaped relation between the default threshold

and volatility. It turns out that a higher cash flow volatility has two opposite

effects on the endogenous default threshold x̄1: One decreases the default

threshold due to the liquidation option effect and the other increases the

threshold since investors are risk-averse.

Table 2: Impacts of cash flow volatility (σ)

σ 0.5 0.55 0.6 0.65 0.7

x̄1 2.02 2.05 2.05 2.04 2.03

x̄2 3.85 4.10 4.34 4.59 4.83

B 76.64 74.26 71.50 68.52 65.42

E 16.52 14.79 13.40 12.21 11.17

CB 12.14 10.73 9.55 8.66 8.04

6.2. Risk-taking incentives

To study the risk-taking incentives of shareholders of a firm issuing CoCos,

we assume the firm has an option to increase cash flow volatility σ by choosing

different technologies. We check whether CoCos will enhance risk-prevention

incentive to shareholders or not. To this end, we compute the implied values

of equity while cash flow volatility changes from σ = 0.1 to σ = 0.9 for

several different risk aversion parameters, ownership stakes and correlations.
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The numerical results are reported in Figures 1∼6.
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Figure 1: This figure shows the impact

of volatility (σ) on the implied value of

equity with four levels of ownership stake

(risk aversion γ = 1 and correlation coef-

ficient ρ = 0.7 ).
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Figure 2: This figure shows the impact

of volatility (σ) on the equilibrium price

of equity with four levels of the ownership

stake (risk aversion γ → 0 and correlation

coefficient ρ = 0.7).

Figures 1 and 2 depict the impact of volatility σ on the implied value of

equity with four ownership stakes λ when risk aversion γ = 1 and γ → 0

respectively. They show that if the volatility is small enough, the ownership

stake almost has no impact on the implied value of equity. Namely, if the

issuing firm’s profits keep steady growth, the ownership stake has little effect

on the interests of equity holders. This conclusion is counter-intuitive at first

sight. It turns out that a smaller volatility leads to a lower possibility of

conversion and naturally the impact of ownership stake on the implied value

of equity is very limited. Figures 3 and 4 state that there are risk-taking

incentives for an investor who is risk-neutral toward idiosyncratic risk but

there are not for a risk-averse investor, even his risk-aversion index is small,
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say γ = 0.5. In general, the higher the ownership stake or the larger the risk

aversion index, the weaker the incentives. The intuition behind this result

is that if shareholders are risk-averse, they demand an extra idiosyncratic

risk premium, which definitely decreases the implied value of equity. This

effect makes shareholders prefer projects with a lower idiosyncratic volatility.

Figure 5 shows further that the implied value of equity deceases faster with

cash flow volatility for a more risk-averse investor. In other words, there

are fewer risk-taking incentives for a more risk-averse shareholder. All the

results explain that in a risk-averse world, CoCos can prevent shareholders

from investing in high-risk projects and indirectly increase the financial safety

of the issuing firms.

In particular, our results here are in contrast to the standard results on

CoCos, say those derived by Koziol and Lawrenz (2012) among others, which

argue that CoCos induce the risk-shifting incentives. This difference results

from our assumption that investors are risk-averse. For this reason, a high-

risk project might have much less value than that in a risk-neutral world.

Another reason is that Koziol and Lawrenz (2012) do not take into account

the change of the risk-adjusted drift parameter while investing in a project

with a higher risk. Doing so, they actually assume that the expected return

of the investment project increases with its risk at the same time. As a result,

investors in this case would have more risk-shifting incentives.
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Figure 3: This figure shows the impact

of volatility (σ) on the implied value of

equity with three levels of the ownership

stake (risk aversion γ = 0.5 and correla-

tion coefficient ρ = 0.2 ).
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Figure 4: This figure shows the impact of

volatility (σ) on the equilibrium price of

equity with three levels of the ownership

stake (risk aversion γ → 0 and correlation

coefficient ρ = 0.2).

Figure 6 turns to the impact of cash flow volatility σ and correlation (ρ)

on the implied value of equity. In general, the same story described in Figure

5 happens again. However, if the cash flow is strongly negatively correlated

with the market portfolio,12 the implied value of equity will conversely in-

crease with cash flow volatility (σ). This is true since a negatively correlated

project is just like an insurance product and can decrease the total systematic

risk faced by shareholders.

12Generally speaking, as a matter of fact, the correlation is positive.
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Figure 5: The impact of volatility (σ)

on the implied value of equity under dif-

ferent risk aversion parameters.
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Figure 6: This figure shows the impact

of volatility (σ) on the implied value of

equity under different correlations.

6.3. Analysis on capital structure

To compare our model with a classical capital structure, in this and next

subsections, we maximize the total firm value over the coupon rates b1 and

b2 for a previously given ownership stake λ = 0.4. We will discuss optimal

ownership stake as well in Subsection 6.5.

We fix optimal capital structure for the given ownership stake λ = 0.4

with and without CoCos respectively. First, we ignore taxes by letting ξ = 0

to measure diversification benefits. Second, we take into account tax benefits

by letting ξ = 0.2. Finally, we compare the conclusions in a risk-averse world

with those in the risk-neutral one.

Tables 3∼6 present simulation results. Panel A of Table 3 shows optimal

capital structure without tax, i.e. ξ = 0. In a classical theory, it is unfavor-

able to take debt financing since it only increases bankruptcy costs. This is

incorrect in our model as seen from Panel A of Table 3. The reason is that

30



both CoCos and SBs produce diversification benefits. By contrast, in a risk-

neutral world, the diversification benefits disappear and so the SBs’ coupon

rate is zero while the CoCos’ coupon rate can take any value as seen in the

panel. It is emphasized that in optimal capital structure even without tax,

only if CoCo investors are risk-averse, it is favorable to issue CoCos but Co-

Cos must convert into equity immediately (since x̄2 ≥ 5.02 > δ0 = 5) as seen

in Panel A of Table 3. The reason is that CoCos still provide diversification

benefits.

Both Panel A and Panel B of Table 3 state that the firm should issue less

CoCos and equity and more SBs if investors are more risk-averse. This is

because for a more risk-averse investor, the subjective value (implied value)

of the same risk asset is less. Meanwhile, SBs are priced by the equilibrium

pricing approach and thus it does not depend on risk aversion. Therefore,

the firm should sell less CoCos to a more risk-averse investor and naturally

the amount of SBs issued gets more.

Table 3 further shows that the optimal leverage, default threshold and

conversion threshold increase with risk aversion but the total firm value re-

versely decreases with the index.

Panels A∼D of Table 5 show the optimal capital structure with different

idiosyncratic risk volatility levels (ε ≡ σ
√

1− ρ2) while systematic risk keeps

unchanged. It says that if investors are risk-averse enough, say γ = 1, once

idiosyncratic risk rises, the firm should sell less CoCos and equity but more

SBs. However, if the investors are risk-neutral toward idiosyncratic risk (γ →

0), the opposite holds true. The main reason is that the utility-based price

of a risk asset is less than its equilibrium price and the difference increases
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with idiosyncratic risk. Hence, the firm would rather allocate more cash flow

to SB investors if the investors of equity or CoCos are more risk-averse or

idiosyncratic risk goes up. On the contrary, if investors are risk-neutral, then

an increased idiosyncratic risk will raise the values of equity and CoCos as

well since both of them involve a call option on the firm’s asset. Therefore,

the firm should sell less SBs and increase the amount of equity and CoCos.

Table 5 presents that conversion threshold and default threshold increase

with SBs’ coupon rate. A larger bankruptcy loss rate will induce higher

expected bankruptcy costs and consequently the firm should decrease the

amount of SBs issued. In this way, the possibility of bankruptcy drops and

the negative effect of an increased bankruptcy loss rate becomes less.

Tables 3 and 5 show that optimal leverage (CB + B)/(E + CB + B) is

always greater than that if CoCos are not issued. It increases with idiosyn-

cratic risk volatility ε and risk aversion γ. However, the opposite holds true

in a risk-neutral world from Panel D of Table 5. Hence, the diversification

benefits lead to a seemingly counterintuitive prediction: More risk-averse

investors prefer a higher leverage. This happens because investors are risk-

averse and both equity and CoCos are exposed to idiosyncratic risk while

SBs not. It can be further explained as follows.

First, a natural measure of a leverage in our model is the implied leverage,

which is defined as the ratio of the debt value, i.e. the sum of the implied

value of CoCos and the equilibrium value of SBs, to the total value of the

firm, which equals the debt value plus the implied value of equity. Accord-

ingly, the implied (subjective) value of equity (due to nondiversifiable risk)

has significant impact on the leverage and ignoring subjective valuation will
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substantially underestimate the firm’s leverage. In fact, as pointed out in

Subsection 6.1, the value of equity decreases quickly and that of CoCos de-

creases slowly as risk aversion rises. This means that the more risk-averse

the investors, the higher the leverage.

Second, diversification motives make the firm issue more debt, which fur-

ther raises the leverage ratio of the issuing firm. The more risk-averse the

investors, the stronger incentive they have to diversify idiosyncratic risk.

While numerical results depend on model parameter assumptions, the anal-

ysis provides support for our intuition that the firm’s need for diversification

and the subjective valuation discount for bearing nondiversifiable idiosyn-

cratic risk are key determinants of the implied leverage for a firm, as argued

by Chen et al. (2010). Our analysis also explains that the classical approach

to fix the leverage of a firm would lead to a wrong tradeoff between equity

and debt and its leverage might be significantly underestimated.
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Table 3: This table plots the impact of risk aversion γ on the optimal capital structure

including equity, SBs and CoCos. We consider two business income tax rates (ξ = 0 or

ξ = 0.2) and three risk aversion levels. The case ”γ → 0” corresponds to the equilibrium

pricing. In particular, the first line of Panel A represents that the total firm value is

independent of the coupon of CoCos.The total firm value is given by T = E+CB+B, and

the leverage given by L ≡ (CB +B)/(E + CB +B).

γ b1 B b2 CB E T L(%) x̄2 x̄1

Panel A:

ξ = 0

γ → 0 0 0 – – – 113.34 – – -2.26

γ = 1 3.55 65.68 ≥ 1.90 14.43 19.60 99.71 80.35 ≥ 5.02 1.66

γ = 2 4.20 74.27 ≥ 1.25 8.33 10.48 93.08 88.74 ≥ 5.02 2.53

Panel B:

ξ = 0.2

γ → 0 3.35 62.66 1.20 16.40 24.87 103.93 76.07 4.08 1.09

γ = 1 4.00 71.50 1.10 10.44 12.83 94.77 86.46 4.65 2.05

γ = 2 4.20 73.02 1.00 7.75 8.89 89.66 90.08 4.76 2.46
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Table 4: This table reports the impact of risk aversion γ on the optimal

capital structure including equity and the straight bond only. The partial

aim is to compare the results with those reported in Table 3. The total

firm value is given by T = E+B, and the leverage given by L = B/(E+B).

γ b1 B E T L (%) x̄1

Panel A: ξ = 0

γ → 0 0 0 113.34 113.34 0 -2.26

γ = 1 4.20 74.49 18.97 93.46 79.70 2.47

γ = 2 4.55 77.20 10.06 87.26 88.48 3.07

Panel B: ξ = 0.2

γ → 0 4.05 73.29 29.19 102.48 71.52 1.79

γ = 1 4.35 74.92 15.11 90.03 83.22 2.55

γ = 2 4.50 75.16 9.21 84.36 89.09 2.99
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Table 5: This table reports the impact of idiosyncratic risk volatility (ε ≡ σ
√

1− ρ2)

and bankruptcy loss rate (α) on the optimal capital structure including equity, SBs and

CoCos. We consider two business income tax rates (ξ = 0 or ξ = 0.2) and three levels of

the idiosyncratic risk volatility (ε = 0.30, ε = 0.43 or ε = 0.56). We compare the implied

values in Panel B with the equilibrium prices in Panel D. We take the baseline parameter

values unless otherwise stated in the table.

ε b1 B b2 CB E T L (%) x̄2 x̄1

Panel A:

ξ = 0

ε = 0.30 2.80 54.20 ≥ 2.65 21.00 29.96 105.17 71.51 ≥ 5.02 1.01

ε = 0.43 3.55 65.68 ≥ 1.90 14.43 19.60 99.71 80.35 ≥ 5.02 1.66

ε = 0.56 4.00 70.10 ≥ 1.30 10.83 14.06 94.99 85.20 ≥ 5.02 1.97

Panel B:

ε = 0.30 3.80 70.78 1.15 12.87 15.47 99.12 84.39 4.50 1.97

ε = 0.43 4.00 71.50 1.10 10.44 12.83 94.77 86.46 4.65 2.05

ε = 0.56 4.25 71.99 1.05 8.30 10.49 90.78 88.45 4.86 2.15

Panel C:

α = 0.6

ε = 0.30 3.40 63.91 1.40 16.49 18.01 98.41 81.70 4.34 1.57

ε = 0.43 3.60 64.99 1.35 13.45 15.23 93.67 83.74 4.50 1.65

ε = 0.56 3.80 65.22 1.30 11.00 12.98 89.20 85.45 4.65 1.70

Panel D:

γ → 0

ε = 0.30 3.45 65.59 1.15 16.10 22.96 104.65 78.06 4.13 1.46

ε = 0.43 3.35 62.66 1.20 16.40 24.87 103.93 76.07 4.08 1.09

ε = 0.56 3.30 60.38 1.25 16.56 26.37 103.31 74.47 4.07 0.73
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Table 6: This table reports the impact of idiosyncratic risk volatility ε and loss rate

(α) on the optimal capital structure including equity and SBs only. The partial aim is

to compare the results with those reported in Table 5.

ε b1 B E T L(%) x̄1

Panel A: γ = 1, ξ = 0, α = 0.4

ε = 0.30 3.65 68.74 31.24 99.98 68.75 1.97

ε = 0.43 4.20 74.49 18.97 93.46 79.70 2.47

ε = 0.56 4.50 75.22 13.37 88.59 84.91 2.68

Panel B: γ = 1, ξ = 0.2, α = 0.4

ε = 0.30 4.25 76.56 18.83 95.39 80.26 2.51

ε = 0.43 4.35 74.92 15.11 90.03 83.22 2.55

ε = 0.56 4.50 73.40 12.06 85.46 85.89 2.59

Panel C: γ = 1, ξ = 0.2, α = 0.6

ε = 0.30 3.95 71.51 25.55 94.06 76.03 2.18

ε = 0.43 4.00 69.36 18.79 88.15 78.68 2.19

ε = 0.56 4.10 67.41 15.61 83.02 81.20 2.20

Panel D: γ → 0, ξ = 0.2, α = 0.4

ε = 0.33 4.15 76.38 26.68 103.06 74.11 2.16

ε = 0.42 4.05 73.29 29.19 102.48 71.52 1.79

ε = 0.50 4.00 70.77 31.27 102.04 69.34 1.43

6.4. A comparison between two capital structures with and without CoCos

By comparing Table 3 with Table 4 and Table 5 with Table 6 respectively,

we find that the optimal leverage with CoCos is greater than that without

CoCos. The total firm value increases considerably if CoCos are issued and
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they can not only decease bankruptcy risk but also significantly increase the

total firm value, even if tax shields are not taken into account.

For example, Tables 3 and 4 indicate that under our baseline parame-

ter values, if risk aversion γ = 1, the total firm value increases by (94.77 −

90.03)/90.03 = 5.26%; if γ = 2, the number is (89.66−84.36)/84.36 = 6.28%.

Generally speaking, the higher the risk aversion, the larger the amount in-

creased. To the extreme, if investors are risk-neutral toward idiosyncratic

risk, i.e. γ → 0, the increased amount is very limited as seen in Tables 3∼6.

Tables 5 and 6 further indicate that the higher the idiosyncratic risk the

larger the increased amount of the total firm value if CoCos are issued.

Now we turn to default probability. For this aim, it suffices to compare

default thresholds between capital structures with and without CoCos though

it is direct to derive explicit default probabilities. Tables 3∼6 state that if

CoCos are issued, default threshold x̄1 decreases steadily, no matter whether

investors are risk-averse or not.

Furthermore, to compare the risk-taking incentive in the case where Co-

Cos are issued with that where CoCos are not issued, we provide Figures 7

and 8. Figure 7 takes the correlation ρ = 0.2 and ownership stake λ = 0.2

and Figure 8 takes ρ = 0.2 and SBs’ coupon rate b1 = 4+0.8 = 4.8 excluding

CoCos. The results explain that there are no obvious evidences on whether

CoCos enhance the risk-taking incentive of shareholders or not. As shown

in Subsection 6.2, if investors are a bit risk-averse, say γ = 0.5, Figures

7 and 8 say that shareholders have not risk-taking incentives no matter if

CoCos are issued or not. Jensen and Meckling (1976) point out that there

is an incentive problem associated with risky debt: After debt is in place,
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managers have incentive to take on riskier projects to take advantage of the

option-type payoff structure of equity. However, there is little empirical ev-

idence in support of such risk-shifting behaviors. Chen et al. (2010) argue

that one possible explanation is that managerial risk aversion can potentially

dominate the risk-shifting incentives. Obviously, our conclusions are quite

consistent with their explanation.
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Figure 7: The figure presents the impact

of volatility (σ) on the implied value

of equity with CoCos under different risk

aversion parameters (ρ = 0.2, λ = 0.2).
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Figure 8: The figure presents the impact

of volatility (σ) on the implied value of

equity without CoCos under different risk

aversion parameters (ρ = 0.2, b1 = 4.8).

6.5. Optimal ownership stake and conversion leverage

To design CoCos, we must specify its coupon, conversion threshold and

conversion ratio or its ownership stake. As far as we know, no paper in the

literature discusses what optimal ownership stake should be. This happens

because the problem is unimportant in a risk-neutral world. However, in

our model, investors are risk-averse and ownership stake is therefore a key

determinant in designing CoCos, as seen in Figure 9 and Table 7.

39



Figure 9 depicts the effect of ownership stake (λ) on the total firm value

under risk aversion γ = 1, 2 respectively. It indicates that the firm value is a

globally concave function of the stake.

Table 7 reports that, if investors are risk-neutral, the total firm value is

independent of the ownership stake. By contrast, if investors are risk-averse,

optimal ownership stake increases with both risk aversion γ and idiosyncratic

risk volatility ε. This phenomenon explains that the firm should allocate

more wealth to CoCo holders upon conversion. Similar to Panel B of Table

3, Panel A of Table 7 also states that the firm should issue less CoCos and

equity and more SBs if investors are more risk-averse.
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Table 7: This table plots the impact of risk aversion γ and idiosyncratic risk level ε on

optimal capital structure including equity, SBs and CoCos. We consider three risk aversion

levels and three levels of idiosyncratic risk volatility. We take the baseline parameter values

unless otherwise stated.

γ b1 B b2 CB E T L(%) λ x̄2 x̄1

Panel A:

ε = 0.43

γ → 0 3.35 62.66 1.20 16.40 24.87 103.93 76.07 – 4.08 1.09

γ = 1 4.10 73.04 1.10 11.75 10.32 95.11 89.15 0.55 4.76 2.09

γ = 2 4.40 76.02 0.90 8.33 5.99 90.34 93.37 0.65 4.86 2.49

Panel B:

γ = 1

ε = 0.3 3.85 71.52 1.15 13.84 13.69 99.05 86.18 0.5 4.55 1.99

ε = 0.43 4.10 73.04 1.10 11.75 10.32 95.11 89.15 0.55 4.76 2.09

ε = 0.50 4.25 73.86 1.05 10.93 8.48 93.27 90.91 0.6 4.86 2.12

Note: If γ → 0, the total value of the firm is unaffected by the ownership stake λ.

And we take the baseline parameter value λ = 0.4.

Figure 10 plots the effect of conversion leverage and risk aversion on the

total firm value. As expected, the total firm value increases monotonically

with conversion leverage. This is because the higher the conversion leverage,

the more the tax shield while bankruptcy costs are unchanged. However, as

a matter of fact, the conversion leverage must be less than a pre-specified

level under a suitable financial regulatory environment, say φ ≤ 0.95.
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Figure 9: This figure shows the impact

of ownership stake (λ) on the total firm

value with two levels of risk-aversion in-

dex.

0.85 0.9 0.95 1
84

86

88

90

92

94

96

98

100

102

104

conversion leverage φ

th
e
 t

o
ta

l 
fi
rm

 v
a

lu
e

Impact of changes in conversion leverage φ on the total firm value

γ→0

γ=1

γ=2

Figure 10: This figure shows the impact

of conversion leverage (φ) on the total

firm value with coupons b1 = 2.5, b2 =

2.3.

7. Conclusions

After the recent global financial crisis, one of the most common sug-

gestions is to introduce contingent convertible bonds (CoCos) into capital

structure of a firm, which is too important to fail. Actually, CoCos can be

issued by any firms. To the best of our knowledge, all papers in the lit-

erature on CoCos are based on the following assumptions: The market is

complete or investors are risk-neutral toward idiosyncratic risk. However, in

practice, it is common for a risk-averse investor to invest in an incomplete

market. For this reason, we relax the assumption and discuss the pricing of

equity and CoCos and optimal capital structure in an incomplete market for

a risk-averse investor, based on the consumption utility indifference pricing

approach, while straight bonds (SBs) are priced by an equilibrium pricing

approach since their idiosyncratic risk can be presumably diversified away.
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We derive the explicit equilibrium prices of all corporate securities and

semi-closed-form implied values of equity and CoCos based on the consump-

tion utility indifference pricing method under an exogenously given conver-

sion threshold and an endogenous default threshold. Following that, we

analyze optimal capital structure by a numerical method.

We perform numerical simulations by finite difference methods and pro-

vide a comparison between the capital structures with and without CoCos.

The results show that: (i) CoCos can increase the total firm value and the

increased value increases dramatically with idiosyncratic risk volatility and

the degree of risk aversion of investors; (ii) The total firm value is concave in

the ownership stake and there is a unique optimal one, which increases with

risk aversion; (iii) If investors are risk-averse enough, the issued amounts of

CoCos and equity (SBs) will decrease (increase) with idiosyncratic risk but if

investors are risk-neutral, the opposite holds true; (iv) There are risk-taking

incentives for investors who are risk-neutral toward idiosyncratic risk but

there are not if investors are somewhat risk-averse, no matter if CoCos are

issued or not; (v) The higher the idiosyncratic risk or the more risk-averse

the investors, the greater the leverage and the leverage including CoCos is

always greater than that excluding CoCos.
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Appendices

Appendix A Proof of Proposition 3.1

According to Bellman’s principle of optimality, J1(w, x) can be equiva-

lently written as

J1(w, x)

= sup
(C,θ,τ1)∈(C,Θ,T )

E
[∫ τ1

0
e−βtU(Ct)dt+ e−βτ1V 0(Wτ1)|W0 = w, δ0 = x

]
,

(A.1)

subject to (1) and (14). Therefore, by a standard computation, we obtain

(15).

From the first-order condition (19) and exponential utility (8), the optimal

consumption rate is evidently given by

c = −1

γ
ln J1

w(w, x). (A.2)

Substitute (A.2) and the second equation of (19) into (15), we immediately

get

(rw + (1− λ)(1− ξ)(x− b1) + 1
γ

ln J1
w − 1

γ
)J1
w + µJ1

w + 1
2
η2J1

xx

− ((µe−r)J1
w+σσeρJ1

wx)2

2σ2
eJ

1
ww

− βJ1 = 0.
(A.3)

According to (10) and (20), E1(x, b1) satisfies

J1(w, x) = − 1

γr
exp

(
1− β/r − γr

(
w + E1(x, b1) +

η2

2r2γ

))
. (A.4)

If the current cash flow rate x is large enough, according to (21), E1(x, b1)

satisfies

J2(w, x) = − 1

γr
exp

(
1− β/r − γr

(
w + E1(x, b1) +

η2

2r2γ

))
. (A.5)
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Plugging (A.4) and (A.5) back into HJB (A.3) and boundary condition (16)

respectively leads to (22) and boundary conditions (23) and (24) of Propo-

sition 3.1. Substituting (A.4) into (A.2) and the second equation of (19) we

derive the optimal consumption rate (25) and the portfolio rule (26).

Appendix B Proof of Theorem 3.2

Thanks to Bellman’s principle of optimality, the optimization problem

(12) can be equivalently written as

J(w, x)

= sup
(C,θ)∈(C,Θ)

E
[∫ τ2

0
exp (−βt)U(Ct)dt+ exp(−βτ2)J1(Wτ2)|W0 = w, δ0 = x

]
,

(B.1)

subject to (1) and (11). By a standard computation, we then derive (27).

From the first term of the first-order condition (29) and the exponential

utility (8), the optimal consumption rate is at once given by

c = −1

γ
ln Jw(w, x). (B.2)

Thus, it follows from (B.2) and the second equation (29) that

(rw + x− b1 − b2 + 1
γ

ln Jw − 1
γ
)Jw + µJw + 1

2
η2Jxx

− ((µe−r)Jw+σσeρJwx)2

2σ2
eJww

− βJ = 0.
(B.3)

According to (10) and (30), E(x, b1, b2) satisfies

J(w, x) = − 1

γr
exp

(
1− β/r − γr

(
w + E(x, b1, b2) +

η2

2r2γ

))
. (B.4)

Therefore, if the current cash flow rate x is large enough, according to (31),

E(x, b1, b2) satisfies

J3(w, x) = − 1

γr
exp

(
1− β/r − γr

(
w + E(x, b1, b2) +

η2

2r2γ

))
. (B.5)
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Substituting (B.4) and (B.5) into (B.3) and the boundary condition (28)

respectively gives (32) and the boundary conditions (33) and (34) in Theorem

3.2. Plugging (B.4) back into (B.2) and the second equation of (29) gives the

optimal consumption rate (35) and the portfolio rule (36).

The proofs of Proposition 3.3 and Theorem 3.4 are similar to those of

Proposition 3.1 and Theorem 3.2 respectively and so we omit them here.
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